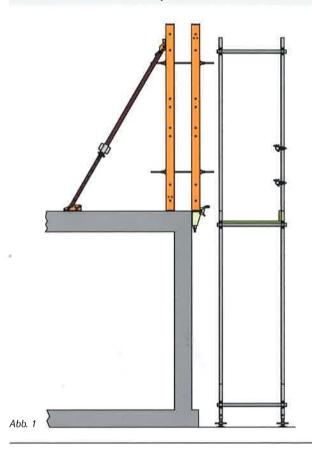
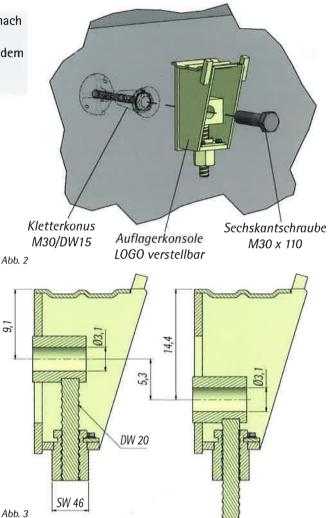


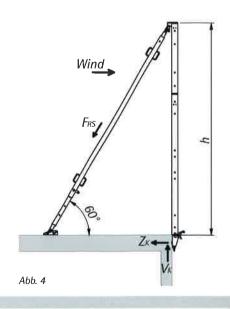
Auflagerkonsole LOGO verstellbar




PASCHAL-Werk G. Maier GmbH Kreuzbühlstraße 5 · 77790 Steinach Tel.: +49 7832 71-0 · Fax: +49 7832 71-209 service@paschal.de · www.paschal.de

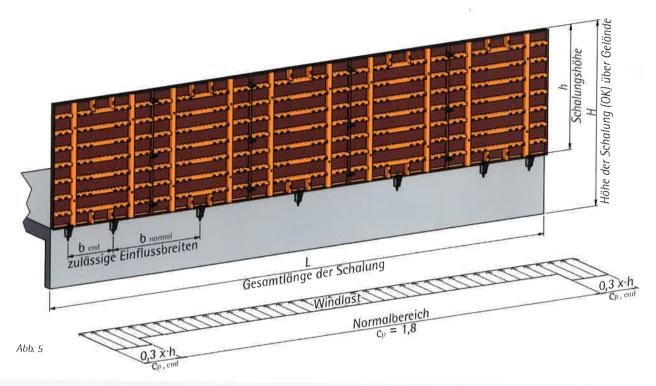
Technische Information

- Zur Unterstützung der Schalung beim taktweisen Betonieren nach oben, wo keine Bühne eingesetzt werden soll.
- Befestigungsmöglichkeit der Schalung gegen Abheben mit dem Keilspanner.
- Höhenverstellbar bis zu 5,3 cm.


Ermittlung der zulässigen Einflussbreiten der Auflagerkonsolen in Abhängigkeit von Windlast und Schalungseigengewicht bei Abstützung der Außenschalung

Randbedingungen

- Befestigung der Abstützungen an der Oberkante Schalung.
- Windlasten für Deutschland, Binnenland Windzone 2.
- Lasten für die Richtstreben und Auflagerkonsolen gehen von gleichen Einflussbreiten aus.
- Betonfestigkeit fck,cube ≥ 15 N/mm² zum Zeitpunkt der Lastaufbringung.
- Die Schalungselemente, die nicht auf einer Auflagerkonsole aufstehen, sind mindestens durch eine Spannschraube mit den danebenliegenden Elementen zu verbinden.
- Alle Werte sind charakteristische Werte.


max. Richtstrebenlast FRS [kN]: 8,5 max. Lasten für max. vertikale Last an der Auflagerkonsole V_K [kN]: 13,7 Einflussbreiten max. horizontale Last an der Auflagerkonsole V_K [kN]: 23,4 auf Seite 3

• Sofern die Innenschalung vorgestellt und abgestützt wird, siehe *Abb.1*, kann mit den gleichen Tabellenwerten gearbeitet werden.

Technische Information

Für den Normalbereich der Schalung wird die zulässige Einflussbreite in Abhängigkeit von der Schalungshöhe h und der Höhe der Schalung über OK Gelände H aus Tab.1 abgelesen.

In gleicher Weise erfolgt die Ermittlung für den Endbereich 0,3 x h, nur werden dort erhöhte Windlasten bzw. Beiwerte cp angesetzt. Diese ergeben sich aus dem Verhältnis der Gesamtlänge der Schalung L und der Schalungshöhe h, Tab.2 bis Tab.4.

Zulässige Einflussbreiten (m)

Normalbereich:

Tab. 1 $c_p = 1.8$

Schalungshöhe h [m]		2,70	3,40	3,75	4,05	4,80	5,40
Höhe der Schalung über OK Gelände H	7m	4,20	3,34	3,03	2,80	2,36	2,10
	10m	3,83	3,05	2,76	2,56	2,15	1,92
	20m	3,15	2,50	2,27	2,10	1,77	1,57
	30m	2,79	2,22	2,01	1,86	1,57	1,39

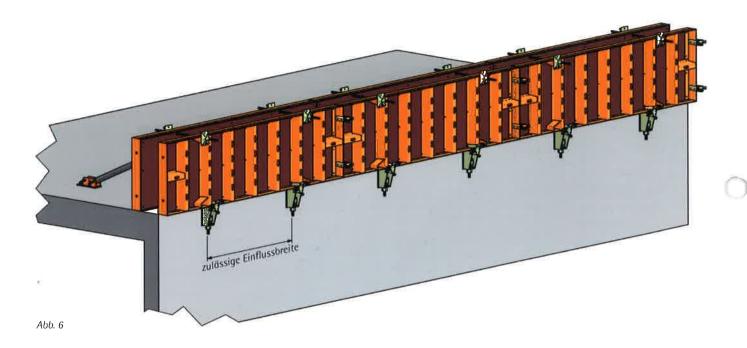
Endbereich:

Tab. 2 für L/h < 3 und $c_p = 2.3$

4 • • • • • • • • • • • • • • • • • • •		
Zwischenwerte kö	nnen interpoliert	werden

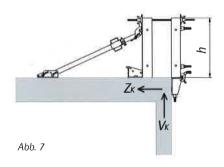
Schalungshöhe h [m]		2,70	3,40	3,75	4,05	4,80	5,40
Höhe der Schalung über OK Gelände H	7m	3,50	2,78	2,52	2,33	1,97	1,75
	10m	3,18	2,52	2,29	2,12	1,79	1,59
	20m	2,58	2,05	1,86	1,72	1,45	1,29
	30m	2,25	1,78	1,62	1,51	1,27	1,13

Tab. 3 für L/h = 5 und $c_p = 2.9$


Schalungshöhe h [m]		2,70	3,40	3,75	4,05	4,80	5,40
Höhe der Schalung über OK Gelände	7m	2,92	2,32	2,10	1,95	1,64	1,46
	10m	2,63	2,09	1,90	1,76	1,48	1,32
uoei ok delande	20m	1,99	1,57	1,43	1,33	1,12	0,99
H	30m	1,60	1,27	1,15	1,07	0,90	0,80

Tab. 4 für L/h > 10 und $c_0 = 3.4$

Schalungshöhe h [m]		2,70	3,40	3,75	4,05	4,80	5,40
Höhe der Schalung über OK Gelände H	7m	2,56	2,04	1,85	1,71	1,44	1,28
	10m	2,31	1,83	1,66	1,54	1,30	1,15
	20m	1,58	1,25	1,14	1,06	0,89	0,79
	30m	1,29	1,02	0,93	0,86	0,72	0,64



Einsatz bei kleinen Betonierhöhen ohne untere Spannstelle:

Randbedingungen

- Die Innenschalung wird auf der Decke fixiert und ausgerichtet.
- Windlasten werden von der Innenschalung übernommen.
- Betonfestigkeit fck,cube ≥ 15 N/mm² zum Zeitpunkt der Lastaufbringung.
- Die Schalungselemente werden an jeder Auflagerkonsole mit einem Keilspanner verbunden.
- Die Schalungselemente, die nicht auf einer Auflagerkonsole aufstehen, sind mindestens durch eine Spannschraube mit den danebenliegenden Elementen zu verbinden.
- Alle Werte sind charakteristische Werte.

zulässige Werte:

Schalungshöhe h [m]	0,60	0,75	0,90	1,35
zulässige Einflussbreite [m]	2,12	1,43	1,02	0,47
max. vertikale Last an der Auflagerkonsole Vk [kN]	4,00	2,80	2,10	1,10
max. Verankerungskraft an der Auflagerkonsole Zk [kN]	23,40	23,40	23,40	23,40

Tab. 5